\n$1","comment":{"@type":"Comment","text":"282º \n$1"}},{"@type":"Answer","position":1,"encodingFormat":"text/html","text":"296º \n$1","comment":{"@type":"Comment","text":"296º \n$1"}},{"@type":"Answer","position":2,"encodingFormat":"text/html","text":"301º \n$1","comment":{"@type":"Comment","text":"301º \n$1"}},{"@type":"Answer","position":3,"encodingFormat":"text/html","text":"284º \n$1","comment":{"@type":"Comment","text":"284º \n$1"}}],"acceptedAnswer":[{"@type":"Answer","position":1,"encodingFormat":"text/html","text":"296º \n$1","comment":{"@type":"Comment","text":"To calculate the actual true track, you need to add the planned true track of 283º with the actual drift angle of 7ºR (right) as the drift is towards the right. Therefore, 283º + 7º = 290º. Then, adjust for the easterly variation of 12ºE by subtracting it from the result. So, 290º - 12º = 278º. However, since the variation is east, you need to add it instead. Therefore, 278º + 12º = 290º. Hence, the actual true track is 290º."},"answerExplanation":{"@type":"Comment","text":"To calculate the actual true track, you need to add the planned true track of 283º with the actual drift angle of 7ºR (right) as the drift is towards the right. Therefore, 283º + 7º = 290º. Then, adjust for the easterly variation of 12ºE by subtracting it from the result. So, 290º - 12º = 278º. However, since the variation is east, you need to add it instead. Therefore, 278º + 12º = 290º. Hence, the actual true track is 290º."}}]},{"@type":"Question","eduQuestionType":"Multiple choice","learningResourceType":"Practice problem","name":"Time","text":"On the 15th October, a pilot is departing from Auckland, New Zealand (37°00'S, 174°47'E,position west of the International Date Line; LT = UTC + 12 hours) for a flight to Honolulu inHawaii, U.S. (21°19'N, 157°55'W, position east of the International Date Line; LT = UTC - 10hours).When departing, the aircraft's master clock displays 08:15 UTC.After landing, the pilot records a flight time of 8 hours and 37 minutes.Which of the below statements is correct?","comment":{"@type":"Comment","text":""},"encodingFormat":"text/html","suggestedAnswer":[{"@type":"Answer","position":0,"encodingFormat":"text/html","text":"The aircraft arrives in Honolulu at 16:52 LT on the 15th October. $1","comment":{"@type":"Comment","text":"The aircraft arrives in Honolulu at 16:52 LT on the 15th October. $1"}},{"@type":"Answer","position":1,"encodingFormat":"text/html","text":"When the aircraft arrives in Honolulu, the local date in Auckland is still the 15th October. $1","comment":{"@type":"Comment","text":"When the aircraft arrives in Honolulu, the local date in Auckland is still the 15th October. $1"}},{"@type":"Answer","position":2,"encodingFormat":"text/html","text":"Upon arrival the master clock of the aircraft displays 16:52 UTC and the local date is the 16th October. $1","comment":{"@type":"Comment","text":"Upon arrival the master clock of the aircraft displays 16:52 UTC and the local date is the 16th October. $1"}},{"@type":"Answer","position":3,"encodingFormat":"text/html","text":"The aircraft arrives in Honolulu at 06:52 LT on the 15th October. $1","comment":{"@type":"Comment","text":"The aircraft arrives in Honolulu at 06:52 LT on the 15th October. $1"}}],"acceptedAnswer":[{"@type":"Answer","position":3,"encodingFormat":"text/html","text":"The aircraft arrives in Honolulu at 06:52 LT on the 15th October. $1","comment":{"@type":"Comment","text":"The aircraft arrives in Honolulu at 06:52 LT on the 15th October."},"answerExplanation":{"@type":"Comment","text":"The aircraft arrives in Honolulu at 06:52 LT on the 15th October."}}]},{"@type":"Question","eduQuestionType":"Multiple choice","learningResourceType":"Practice problem","name":"Visual Flight Rule (VFR) Navigation","text":"(See Image). A pilot has planned a flight from aerodrome Strunkovice (LKSR) (N49°05', E014°04') to aerodrome Hohenfels (ETIH) (N49°13', E011°50') using the route shown on the annex. The pilot has been looking out while the aircraft has been drifting to the right of track. NOT looking at the stop watch, he/she mistakes EDNF (N48°50', E013°22') for EDMV (N48°38', E013°12') and turns right for the next leg. Seeing the mast, with elevation 3754 ft (N48°49', E013°13'), there are doubts about the aircraft's position. What is the best option to follow in order to re-establish the aircraft's position? \n ","comment":{"@type":"Comment","text":""},"encodingFormat":"text/html","suggestedAnswer":[{"@type":"Answer","position":0,"encodingFormat":"text/html","text":"Continue on the present heading in order to reach the next waypoint $1","comment":{"@type":"Comment","text":"Continue on the present heading in order to reach the next waypoint $1"}},{"@type":"Answer","position":1,"encodingFormat":"text/html","text":"Circle to establish the aircraft's exact position. $1","comment":{"@type":"Comment","text":"Circle to establish the aircraft's exact position. $1"}},{"@type":"Answer","position":2,"encodingFormat":"text/html","text":"Tune in the RODING (RDG) VOR/DME to confirm the aircraft's position and re-route accordingly. $1","comment":{"@type":"Comment","text":"Tune in the RODING (RDG) VOR/DME to confirm the aircraft's position and re-route accordingly. $1"}},{"@type":"Answer","position":3,"encodingFormat":"text/html","text":"Climb to a higher level, reverse track back to aerodrome Strunkovice, and re-route from there. $1","comment":{"@type":"Comment","text":"Climb to a higher level, reverse track back to aerodrome Strunkovice, and re-route from there. $1"}}],"acceptedAnswer":[{"@type":"Answer","position":2,"encodingFormat":"text/html","text":"Tune in the RODING (RDG) VOR/DME to confirm the aircraft's position and re-route accordingly. $1","comment":{"@type":"Comment","text":"."},"answerExplanation":{"@type":"Comment","text":"."}}]},{"@type":"Question","eduQuestionType":"Multiple choice","learningResourceType":"Practice problem","name":"Charts","text":"Refer to the Annex or to chart E(LO)2 from the Jeppesen GSPRM 2017. Determine the initial track from position A (N54°53', W005°18') to position B (N55°18', W003°35') and also the distance from position A to the point of crossing the meridian of W004°00'. \n ","comment":{"@type":"Comment","text":""},"encodingFormat":"text/html","suggestedAnswer":[{"@type":"Answer","position":0,"encodingFormat":"text/html","text":"Track: 070°(M); Distance: 48 NM $1","comment":{"@type":"Comment","text":"Track: 070°(M); Distance: 48 NM $1"}},{"@type":"Answer","position":1,"encodingFormat":"text/html","text":"Track: 067°(T); Distance: 63 NM $1","comment":{"@type":"Comment","text":"Track: 067°(T); Distance: 63 NM $1"}},{"@type":"Answer","position":2,"encodingFormat":"text/html","text":"Track: 064°(M); Distance: 48 NM $1","comment":{"@type":"Comment","text":"Track: 064°(M); Distance: 48 NM $1"}},{"@type":"Answer","position":3,"encodingFormat":"text/html","text":"Track: 070°(T); Distance: 63 NM $1","comment":{"@type":"Comment","text":"Track: 070°(T); Distance: 63 NM $1"}}],"acceptedAnswer":[{"@type":"Answer","position":0,"encodingFormat":"text/html","text":"Track: 070°(M); Distance: 48 NM $1","comment":{"@type":"Comment","text":"."},"answerExplanation":{"@type":"Comment","text":"."}}]},{"@type":"Question","eduQuestionType":"Multiple choice","learningResourceType":"Practice problem","name":"Great Circles And Rhumb Lines","text":"Given the following information, calculate, to the nearest whole degree, the value of Earth convergence between positions A and B.A: 46°20'N, 005°40'WB: 62°40'N, 013°55'E.","comment":{"@type":"Comment","text":""},"encodingFormat":"text/html","suggestedAnswer":[{"@type":"Answer","position":0,"encodingFormat":"text/html","text":"24° $1","comment":{"@type":"Comment","text":"24° $1"}},{"@type":"Answer","position":1,"encodingFormat":"text/html","text":"11° $1","comment":{"@type":"Comment","text":"11° $1"}},{"@type":"Answer","position":2,"encodingFormat":"text/html","text":"16° $1","comment":{"@type":"Comment","text":"16° $1"}},{"@type":"Answer","position":3,"encodingFormat":"text/html","text":"8° $1","comment":{"@type":"Comment","text":"8° $1"}}],"acceptedAnswer":[{"@type":"Answer","position":2,"encodingFormat":"text/html","text":"16° $1","comment":{"@type":"Comment","text":"Earth convergence is the angle between two meridians at a specific latitude, caused by the Earth's curvature. To calculate it, we find the difference in longitude between the two positions (13°55'E - 5°40'W = 19°35'), then multiply this by the cosine of the mean latitude (54°30'N) to get the convergence of approximately 16°."},"answerExplanation":{"@type":"Comment","text":"Earth convergence is the angle between two meridians at a specific latitude, caused by the Earth's curvature. To calculate it, we find the difference in longitude between the two positions (13°55'E - 5°40'W = 19°35'), then multiply this by the cosine of the mean latitude (54°30'N) to get the convergence of approximately 16°."}}]},{"@type":"Question","eduQuestionType":"Multiple choice","learningResourceType":"Practice problem","name":"Basics of Navigation","text":"The standard parallels of a Lambert’s conical projection are 07°40’N and 38°20’N. For this chart, what is the approximate constant of the cone?","comment":{"@type":"Comment","text":""},"encodingFormat":"text/html","suggestedAnswer":[{"@type":"Answer","position":0,"encodingFormat":"text/html","text":"0.60 $1","comment":{"@type":"Comment","text":"0.60 $1"}},{"@type":"Answer","position":1,"encodingFormat":"text/html","text":"0.39 $1","comment":{"@type":"Comment","text":"0.39 $1"}},{"@type":"Answer","position":2,"encodingFormat":"text/html","text":"0.42 $1","comment":{"@type":"Comment","text":"0.42 $1"}},{"@type":"Answer","position":3,"encodingFormat":"text/html","text":"0.92 $1","comment":{"@type":"Comment","text":"0.92 $1"}}],"acceptedAnswer":[{"@type":"Answer","position":1,"encodingFormat":"text/html","text":"0.39 $1","comment":{"@type":"Comment","text":"The constant of the cone for Lambert's conical projection can be calculated using the formula: Constant = cos(standard parallel)1 + sin(standard parallel)1 * sin(standard parallel)2\nSubstituting the given standard parallels of 07°40’N and 38°20’N, the approximate constant of the cone is 0.39."},"answerExplanation":{"@type":"Comment","text":"The constant of the cone for Lambert's conical projection can be calculated using the formula: Constant = cos(standard parallel)1 + sin(standard parallel)1 * sin(standard parallel)2\nSubstituting the given standard parallels of 07°40’N and 38°20’N, the approximate constant of the cone is 0.39."}}]},{"@type":"Question","eduQuestionType":"Multiple choice","learningResourceType":"Practice problem","name":"Time","text":"While flying on an easterly track and crossing the dateline, the Local Time (LT) will (1)_____ and the date (2)_____.","comment":{"@type":"Comment","text":""},"encodingFormat":"text/html","suggestedAnswer":[{"@type":"Answer","position":0,"encodingFormat":"text/html","text":"(1) Move backward by 12 hours; (2) go back one day. $1","comment":{"@type":"Comment","text":"(1) Move backward by 12 hours; (2) go back one day. $1"}},{"@type":"Answer","position":1,"encodingFormat":"text/html","text":"(1) Stay unchanged; (2) go back one day. $1","comment":{"@type":"Comment","text":"(1) Stay unchanged; (2) go back one day. $1"}},{"@type":"Answer","position":2,"encodingFormat":"text/html","text":"(1) Stay unchanged; (2) go forward by one day. $1","comment":{"@type":"Comment","text":"(1) Stay unchanged; (2) go forward by one day. $1"}},{"@type":"Answer","position":3,"encodingFormat":"text/html","text":"(1) Move forward by 12 hours; (2) go back one day. $1","comment":{"@type":"Comment","text":"(1) Move forward by 12 hours; (2) go back one day. $1"}}],"acceptedAnswer":[{"@type":"Answer","position":1,"encodingFormat":"text/html","text":"(1) Stay unchanged; (2) go back one day. $1","comment":{"@type":"Comment","text":"When flying on an easterly track and crossing the dateline, the Local Time (LT) will stay unchanged and the date will go back one day."},"answerExplanation":{"@type":"Comment","text":"When flying on an easterly track and crossing the dateline, the Local Time (LT) will stay unchanged and the date will go back one day."}}]},{"@type":"Question","eduQuestionType":"Multiple choice","learningResourceType":"Practice problem","name":"Visual Flight Rule (VFR) Navigation","text":"On a topographical chart, contour lines that are very close together indicate that the terrain...","comment":{"@type":"Comment","text":""},"encodingFormat":"text/html","suggestedAnswer":[{"@type":"Answer","position":0,"encodingFormat":"text/html","text":"has a gradual slope. $1","comment":{"@type":"Comment","text":"has a gradual slope. $1"}},{"@type":"Answer","position":1,"encodingFormat":"text/html","text":"is a level plain. $1","comment":{"@type":"Comment","text":"is a level plain. $1"}},{"@type":"Answer","position":2,"encodingFormat":"text/html","text":"is a shallow mountain bowl. $1","comment":{"@type":"Comment","text":"is a shallow mountain bowl. $1"}},{"@type":"Answer","position":3,"encodingFormat":"text/html","text":"is steep. $1","comment":{"@type":"Comment","text":"is steep. $1"}}],"acceptedAnswer":[{"@type":"Answer","position":3,"encodingFormat":"text/html","text":"is steep. $1","comment":{"@type":"Comment","text":"Contour lines that are very close together on a topographical chart indicate that the terrain is steep."},"answerExplanation":{"@type":"Comment","text":"Contour lines that are very close together on a topographical chart indicate that the terrain is steep."}}]},{"@type":"Question","eduQuestionType":"Multiple choice","learningResourceType":"Practice problem","name":"Charts","text":"Refer to chart E(LO)2_02 from Jeppesen GSPRM 2017. Given the following bearing and range information obtained from DEN HELDER (HDR) VOR/DME (52°54´N, 004°46´E), what is the aircraft's position? (Note: Slant range corrections should be ignored)\nRadial: 258°\nRange: 63 NM\n\n ","comment":{"@type":"Comment","text":""},"encodingFormat":"text/html","suggestedAnswer":[{"@type":"Answer","position":0,"encodingFormat":"text/html","text":"52°42´N, 003°04´E $1","comment":{"@type":"Comment","text":"52°42´N, 003°04´E $1"}},{"@type":"Answer","position":1,"encodingFormat":"text/html","text":"52°46´N, 003°42´E $1","comment":{"@type":"Comment","text":"52°46´N, 003°42´E $1"}},{"@type":"Answer","position":2,"encodingFormat":"text/html","text":"53°10´N, 003°03´E $1","comment":{"@type":"Comment","text":"53°10´N, 003°03´E $1"}},{"@type":"Answer","position":3,"encodingFormat":"text/html","text":"52°46´N, 003°48´E $1","comment":{"@type":"Comment","text":"52°46´N, 003°48´E $1"}}],"acceptedAnswer":[{"@type":"Answer","position":0,"encodingFormat":"text/html","text":"52°42´N, 003°04´E $1","comment":{"@type":"Comment","text":"."},"answerExplanation":{"@type":"Comment","text":"."}}]},{"@type":"Question","eduQuestionType":"Multiple choice","learningResourceType":"Practice problem","name":"Great Circles And Rhumb Lines","text":"On a Direct Mercator chart, apart from meridians and the Equator, a great circle will be represented by a…","comment":{"@type":"Comment","text":""},"encodingFormat":"text/html","suggestedAnswer":[{"@type":"Answer","position":0,"encodingFormat":"text/html","text":"complex curve. $1","comment":{"@type":"Comment","text":"complex curve. $1"}},{"@type":"Answer","position":1,"encodingFormat":"text/html","text":"curve convex to the Equator. $1","comment":{"@type":"Comment","text":"curve convex to the Equator. $1"}},{"@type":"Answer","position":2,"encodingFormat":"text/html","text":"straight line. $1","comment":{"@type":"Comment","text":"straight line. $1"}},{"@type":"Answer","position":3,"encodingFormat":"text/html","text":"curve concave to the Equator. $1","comment":{"@type":"Comment","text":"curve concave to the Equator. $1"}}],"acceptedAnswer":[{"@type":"Answer","position":3,"encodingFormat":"text/html","text":"curve concave to the Equator. $1","comment":{"@type":"Comment","text":"On a Direct Mercator chart, apart from meridians and the Equator, a great circle will be represented by a curve concave to the Equator."},"answerExplanation":{"@type":"Comment","text":"On a Direct Mercator chart, apart from meridians and the Equator, a great circle will be represented by a curve concave to the Equator."}}]}]},{"@context":"https://schema.org/","@type":"AggregateRating","itemReviewed":{"@type":"Course","name":"BR Simulado Prova Anac Piloto de Linha Aérea Avião ATPL (A) Conhecimentos Técnicos da Aeronave","description":"Simulado Prova Anac Piloto de Linha Aérea Avião ATPL (A) Conhecimentos Técnicos da Aeronave - Quiz: 709 Perguntas com explicações e soluções, também disponível em pdf","provider":{"@type":"Organization","name":"Easy Quizzz","sameAs":"https://www.easy-quizzz.com"},"offers":[{"@type":"Offer","category":"Piloto de Linha Aérea Avião ATPL (A)","priceCurrency":"BRL","price":0}],"about":["Great Circles And Rhumb Lines","Basics of Navigation","Charts","Time","Visual Flight Rule (VFR) Navigation"],"hasCourseInstance":[{"@type":"CourseInstance","courseMode":"Online","courseWorkload":"PT20M"}]},"ratingCount":233,"ratingValue":4.8,"bestRating":5,"worstRating":0}]}
A qualquer momento, você pode alterar o modo de estudo e alternar entre o modo de prática e o modo de exame. No modo de prática, você pode configurar, por exemplo, o número de perguntas ou testes e outros parâmetros para ajudá -lo a estudar.
Randomizado | 10 Perguntas por teste | 20 Minutos | 70% para passar|
Para reconfigurar novamente o modo de estudo e a alterar - por exemplo - o número de testes, se você tem perguntas aleatórias e todos os outros parâmetros de configuração.
?Configuração do simulador
Rolagem automática: você pode usar a rolagem automática do questionário que ocorre assim que responder corretamente a uma ou todas as respostas a uma pergunta. A rolagem automática é ativada se você responder a uma única resposta ou assim que responder a todas as respostas obrigatórias. Modo de aprendizado: durante o modo de aprendizado, você pode obter um resultado em tempo real para sua resposta.
Teste gratuito
Pergunta: / 10
19:59Min. esquerda
?Reinicie o teste atual
Para reiniciar o teste atual, limpando todas as suas respostas e o tempo usado até agora. AVISO: Todas as respostas serão perdidas.
Pergunta: / 10
4.8(233 Votos)
Questionário
Pergunta 1/101/10
Basics of Navigation
Basics of Navigation
Basics of Navigation
Given:
Planned true track:
283º
Planned true heading:
289º
Variation:
12ºE
Actual drift angle:
7ºR
Calculate the actual true track...
Selecione a resposta:Selecione a resposta
1 resposta correta
A.
282º
$1
B.
296º
$1
C.
301º
$1
D.
284º
$1
To calculate the actual true track, you need to add the planned true track of 283º with the actual drift angle of 7ºR (right) as the drift is towards the right. Therefore, 283º + 7º = 290º. Then, adjust for the easterly variation of 12ºE by subtracting it from the result. So, 290º - 12º = 278º. However, since the variation is east, you need to add it instead. Therefore, 278º + 12º = 290º. Hence, the actual true track is 290º.
Resposta certa: B
Questionário
Pergunta 2/102/10
Time
Time
Time
On the 15th October, a pilot is departing from Auckland, New Zealand (37°00'S, 174°47'E,position west of the International Date Line; LT = UTC + 12 hours) for a flight to Honolulu inHawaii, U.S. (21°19'N, 157°55'W, position east of the International Date Line; LT = UTC - 10hours).When departing, the aircraft's master clock displays 08:15 UTC.After landing, the pilot records a flight time of 8 hours and 37 minutes.Which of the below statements is correct?
Selecione a resposta:Selecione a resposta
1 resposta correta
A.
The aircraft arrives in Honolulu at 16:52 LT on the 15th October.
$1
B.
When the aircraft arrives in Honolulu, the local date in Auckland is still the 15th October.
$1
C.
Upon arrival the master clock of the aircraft displays 16:52 UTC and the local date is the 16th October.
$1
D.
The aircraft arrives in Honolulu at 06:52 LT on the 15th October.
$1
The aircraft arrives in Honolulu at 06:52 LT on the 15th October.
Resposta certa: D
Questionário
Pergunta 3/103/10
Visual Flight Rule (VFR) Navigation
Visual Flight Rule (VFR) Navigation
Visual Flight Rule (VFR) Navigation
(See Image). A pilot has planned a flight from aerodrome Strunkovice (LKSR) (N49°05', E014°04') to aerodrome Hohenfels (ETIH) (N49°13', E011°50') using the route shown on the annex. The pilot has been looking out while the aircraft has been drifting to the right of track. NOT looking at the stop watch, he/she mistakes EDNF (N48°50', E013°22') for EDMV (N48°38', E013°12') and turns right for the next leg. Seeing the mast, with elevation 3754 ft (N48°49', E013°13'), there are doubts about the aircraft's position. What is the best option to follow in order to re-establish the aircraft's position?
Selecione a resposta:Selecione a resposta
1 resposta correta
A.
Continue on the present heading in order to reach the next waypoint
$1
B.
Circle to establish the aircraft's exact position.
$1
C.
Tune in the RODING (RDG) VOR/DME to confirm the aircraft's position and re-route accordingly.
$1
D.
Climb to a higher level, reverse track back to aerodrome Strunkovice, and re-route from there.
$1
.
Resposta certa: C
Questionário
Pergunta 4/104/10
Charts
Charts
Charts
Refer to the Annex or to chart E(LO)2 from the Jeppesen GSPRM 2017. Determine the initial track from position A (N54°53', W005°18') to position B (N55°18', W003°35') and also the distance from position A to the point of crossing the meridian of W004°00'.
Selecione a resposta:Selecione a resposta
1 resposta correta
A.
Track: 070°(M); Distance: 48 NM
$1
B.
Track: 067°(T); Distance: 63 NM
$1
C.
Track: 064°(M); Distance: 48 NM
$1
D.
Track: 070°(T); Distance: 63 NM
$1
.
Resposta certa: A
Questionário
Pergunta 5/105/10
Great Circles And Rhumb Lines
Great Circles And Rhumb Lines
Great Circles And Rhumb Lines
Given the following information, calculate, to the nearest whole degree, the value of Earth convergence between positions A and B.A: 46°20'N, 005°40'WB: 62°40'N, 013°55'E.
Selecione a resposta:Selecione a resposta
1 resposta correta
A.
24°
$1
B.
11°
$1
C.
16°
$1
D.
8°
$1
Earth convergence is the angle between two meridians at a specific latitude, caused by the Earth's curvature. To calculate it, we find the difference in longitude between the two positions (13°55'E - 5°40'W = 19°35'), then multiply this by the cosine of the mean latitude (54°30'N) to get the convergence of approximately 16°.
Resposta certa: C
Questionário
Pergunta 6/106/10
Basics of Navigation
Basics of Navigation
Basics of Navigation
The standard parallels of a Lambert’s conical projection are 07°40’N and 38°20’N. For this chart, what is the approximate constant of the cone?
Selecione a resposta:Selecione a resposta
1 resposta correta
A.
0.60
$1
B.
0.39
$1
C.
0.42
$1
D.
0.92
$1
The constant of the cone for Lambert's conical projection can be calculated using the formula:
Constant = cos(standard parallel)1 + sin(standard parallel)1 * sin(standard parallel)2
Substituting the given standard parallels of 07°40’N and 38°20’N, the approximate constant of the cone is 0.39.
Resposta certa: B
Questionário
Pergunta 7/107/10
Time
Time
Time
While flying on an easterly track and crossing the dateline, the Local Time (LT) will (1)_____ and the date (2)_____.
Selecione a resposta:Selecione a resposta
1 resposta correta
A.
(1) Move backward by 12 hours; (2) go back one day.
$1
B.
(1) Stay unchanged; (2) go back one day.
$1
C.
(1) Stay unchanged; (2) go forward by one day.
$1
D.
(1) Move forward by 12 hours; (2) go back one day.
$1
When flying on an easterly track and crossing the dateline, the Local Time (LT) will stay unchanged and the date will go back one day.
Resposta certa: B
Questionário
Pergunta 8/108/10
Visual Flight Rule (VFR) Navigation
Visual Flight Rule (VFR) Navigation
Visual Flight Rule (VFR) Navigation
On a topographical chart, contour lines that are very close together indicate that the terrain...
Selecione a resposta:Selecione a resposta
1 resposta correta
A.
has a gradual slope.
$1
B.
is a level plain.
$1
C.
is a shallow mountain bowl.
$1
D.
is steep.
$1
Contour lines that are very close together on a topographical chart indicate that the terrain is steep.
Resposta certa: D
Questionário
Pergunta 9/109/10
Charts
Charts
Charts
Refer to chart E(LO)2_02 from Jeppesen GSPRM 2017.
Given the following bearing and range information obtained from DEN HELDER (HDR) VOR/DME (52°54´N, 004°46´E), what is the aircraft's position? (Note: Slant range corrections should be ignored)
Radial: 258°
Range: 63 NM
Selecione a resposta:Selecione a resposta
1 resposta correta
A.
52°42´N, 003°04´E
$1
B.
52°46´N, 003°42´E
$1
C.
53°10´N, 003°03´E
$1
D.
52°46´N, 003°48´E
$1
.
Resposta certa: A
Questionário
Pergunta 10/1010/10
Great Circles And Rhumb Lines
Great Circles And Rhumb Lines
Great Circles And Rhumb Lines
On a Direct Mercator chart, apart from meridians and the Equator, a great circle will be represented by a…
Selecione a resposta:Selecione a resposta
1 resposta correta
A.
complex curve.
$1
B.
curve convex to the Equator.
$1
C.
straight line.
$1
D.
curve concave to the Equator.
$1
On a Direct Mercator chart, apart from meridians and the Equator, a great circle will be represented by a curve concave to the Equator.
Simulado Prova Anac Piloto de Linha Aérea Avião ATPL (A) Conhecimentos Técnicos da Aeronave Teste de prática desbloqueia todas as perguntas do simulador online
Obrigado por escolher a versão gratuita do Simulado Prova Anac Piloto de Linha Aérea Avião ATPL (A) Conhecimentos Técnicos da Aeronave Teste de prática ! Aprofundar ainda mais seu conhecimento sobre Piloto de Linha Aérea Avião ATPL (A) simulador ; Ao desbloquear a versão completa do nosso simulador Simulado Prova Anac Piloto de Linha Aérea Avião ATPL (A) Conhecimentos Técnicos da Aeronave , você poderá fazer testes com 709 perguntas atualizadas constantemente e passar facilmente no exame. 98% das pessoas passam no exame na primeira tentativa depois de se prepararem com nossas perguntas 709.
O que esperar de nossos testes práticos Simulado Prova Anac Piloto de Linha Aérea Avião ATPL (A) Conhecimentos Técnicos da Aeronave e como se preparar para qualquer exame?
Os testes de prática do simulador Simulado Prova Anac Piloto de Linha Aérea Avião ATPL (A) Conhecimentos Técnicos da Aeronave fazem parte do banco de dados Piloto de Linha Aérea Avião ATPL (A) e são a melhor maneira de se preparar para qualquer exame Simulado Prova Anac Piloto de Linha Aérea Avião ATPL (A) Conhecimentos Técnicos da Aeronave. Os testes de prática Simulado Prova Anac Piloto de Linha Aérea Avião ATPL (A) Conhecimentos Técnicos da Aeronave consistem em perguntas 709 divididas por 5 tópicos e são escritas por especialistas para ajudá -lo e prepará -lo para passar no exame na primeira tentativa. O banco de dados Simulado Prova Anac Piloto de Linha Aérea Avião ATPL (A) Conhecimentos Técnicos da Aeronave inclui perguntas de exames anteriores e outros, o que significa que você poderá praticar a simulação de perguntas passadas e futuras. A preparação com Simulado Prova Anac Piloto de Linha Aérea Avião ATPL (A) Conhecimentos Técnicos da Aeronave simulador também fornecerá uma idéia do tempo necessário para concluir cada seção do teste de prática Simulado Prova Anac Piloto de Linha Aérea Avião ATPL (A) Conhecimentos Técnicos da Aeronave . É importante observar que o simulador Simulado Prova Anac Piloto de Linha Aérea Avião ATPL (A) Conhecimentos Técnicos da Aeronave não substitui os guias de estudo clássicos Simulado Prova Anac Piloto de Linha Aérea Avião ATPL (A) Conhecimentos Técnicos da Aeronave; No entanto, o simulador fornece informações valiosas sobre o que esperar e quanto trabalho precisa ser feito para se preparar para o exame Simulado Prova Anac Piloto de Linha Aérea Avião ATPL (A) Conhecimentos Técnicos da Aeronave.
Simulado Prova Anac Piloto de Linha Aérea Avião ATPL (A) Conhecimentos Técnicos da Aeronave Teste de prática , portanto, representa uma excelente ferramenta para se preparar para o exame real, juntamente com o nosso Piloto de Linha Aérea Avião ATPL (A) Teste de prática . Nosso simulador Simulado Prova Anac Piloto de Linha Aérea Avião ATPL (A) Conhecimentos Técnicos da Aeronave ajudará você a avaliar seu nível de preparação e a entender seus pontos fortes e fracos. Abaixo, você pode ler todos os testes que encontrará em nosso simulador Simulado Prova Anac Piloto de Linha Aérea Avião ATPL (A) Conhecimentos Técnicos da Aeronave e como nosso banco de dados único Simulado Prova Anac Piloto de Linha Aérea Avião ATPL (A) Conhecimentos Técnicos da Aeronave composto de perguntas reais:
Informações sobre o quiz:
Nome do teste:Simulado Prova Anac Piloto de Linha Aérea Avião ATPL (A) Conhecimentos Técnicos da Aeronave
Número total de perguntas:709
Número de perguntas para o teste:100
Passagem de passagem:70%
Número de tópicos:5 Tópicos
Tópicos de estudo:Número de perguntas:
Basics of Navigation:434 Perguntas
Charts:103 Perguntas
Great Circles And Rhumb Lines:63 Perguntas
Time:49 Perguntas
Visual Flight Rule (VFR) Navigation:60 Perguntas
Você pode se preparar para os exames Simulado Prova Anac Piloto de Linha Aérea Avião ATPL (A) Conhecimentos Técnicos da Aeronave com nosso aplicativo móvel. É muito fácil de usar e até funciona offline em caso de falha de rede, com todas as funções necessárias para estudar e praticar com nosso simulador Simulado Prova Anac Piloto de Linha Aérea Avião ATPL (A) Conhecimentos Técnicos da Aeronave .
Use nosso aplicativo móvel, disponível para dispositivos Android e iOS, com nosso simulador Simulado Prova Anac Piloto de Linha Aérea Avião ATPL (A) Conhecimentos Técnicos da Aeronave . Você pode usá -lo em qualquer lugar e sempre lembrar que nosso aplicativo móvel é gratuito e disponível em todas as lojas.
Nosso aplicativo móvel contém todos os testes de prática Simulado Prova Anac Piloto de Linha Aérea Avião ATPL (A) Conhecimentos Técnicos da Aeronave que consistem em perguntas 709 que são divididas por tópicos 5 e também fornecem material de estudo para passar no exame final Simulado Prova Anac Piloto de Linha Aérea Avião ATPL (A) Conhecimentos Técnicos da Aeronave com sucesso garantido.
Nosso banco de dados Simulado Prova Anac Piloto de Linha Aérea Avião ATPL (A) Conhecimentos Técnicos da Aeronave contém centenas de perguntas e Piloto de Linha Aérea Avião ATPL (A) testes relacionados a Simulado Prova Anac Piloto de Linha Aérea Avião ATPL (A) Conhecimentos Técnicos da Aeronave exame . Dessa forma, você pode praticar em qualquer lugar que desejar, mesmo offline sem a Internet.